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Abstract
Droughts are major natural disasters for many parts of world. Dry areas, where
precipitation pattern is markedly seasonal, or is otherwise highly variable, are the most
susceptible. Unlike most natural disasters, drought onset is difficult to identify.
Meteorological and agricultural drought occurrences along time and space take place
randomly and therefore their scientific quantifications are possible by the probabilistic
methods. In the present work an effort has been made to derive drought pattern using
spatio-temporal information by the use of temporal images from NOAA-AVHRR based
Normalized Difference Vegetation Index (NDVI) and meteorological based Standardized
Precipitation Index (SPI). In this study we propose a spatio-temporal explicit algorithm
called as Three-Dimensional Markov random field model for the identification of drought
pattern at next moment of time. This algorithm is based on the assumption that
Standardized Vegetation Index (SVI) reflects the state of vegetation at the given moment
and SPI influences the state of vegetation in the future, this effect was modeled by
incorporation of spatio-temporal contextual information in terms of energy function. The
algorithm is initialized by the calculation of class temporal prior probability from the
temporal images. Finally, an iterative algorithm, Simulated annealing, was used to
compute global posterior energy for all possible updates of the class labels and new class
label was chosen that correspond to lowest energy value. A difficult issue related to MRF
is the determination of the (Markov Random Field) MRF model parameters that weight
the energy terms related to the available information sources. The concept of minimum
perturbation was used to estimate the parameters value.
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Introduction 
Drought is complex event which may impair social, economic, agricultural and other
activities of society. It is temporary, recurring natural disaster, which originates from the
lack of precipitation and brings significant economic losses. It is a slow poison, no one
knows when it creeps in, it can last any number of days and its severity cannot be
predicted. The non-structural characteristic of drought impacts has certainly hindered
the development of accurate, reliable, and timely estimates of severity and ultimately,
the formulation of drought preparedness plans by most governments. The impacts of
drought, like those of other hazards, can be reduced through mitigation and
preparedness. Defining drought is difficult; it depends on differences in regions, needs,
and disciplinary perspectives. Drought always starts with the lack of precipitation, but
may (or may not, depending on how long and severe it is) affect soil moisture, streams,
groundwater, ecosystems and human beings. This leads to the identification of different
types of drought (meteorological, agricultural, hydrological, socio-economic, ecological),
which reflect the perspectives of different sectors on water shortages. India is
predominantly an agrarian country as more than 70% of its population is dependent on
agriculture. Rainfall is the main source of water for agriculture. Drought is measured in
terms of meteorological drought. It is well known that the supply of water through
rainfall cannot be as regular as it can be through irrigation. The drought of 1987 was one
of the worst in the century. Gujarat is one such state where drought occurs with
unfailing regularity. Gujarat is chronically dry and prone to drought. Drought in the
state is the result of a combination of natural factors, principally the scarcity of rain, and
man-made factors such as deforestation and overgrazing, the absence of traditional
rainwater harvesting systems etc. In 1999, as many as 98 out of a total of 225 blocks in
the state received less than 50% of the season's expected rainfall. In 1999, Gujarat faced
the worst drought of the past 100 years. 

The impact of drought on society and agriculture is a real issue but it is not easily
quantified. Reliable indices to detect the spatial and temporal dimensions of drought
occurrences and its intensity are necessary to assess the impact and also for decision-
making and crop research priorities for alleviation (Seiler et al., 1998). The development
and advancements in space technology, to address issues like drought detection,
monitoring and assessment have been dealt with very successfully and helped in
formulation of plans to deal with this slow onset disaster. With the help of
environmental satellite, drought can be detected 4-6 weeks earlier than before and
delineated more accurately, and its impact on agriculture can be diagnosed far in
advance of harvest, which is the most vital for global food security and trade (Kogan,
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1990). Recent literature shows that among the meteorological drought indices, the
Standardized Precipitation Index (SPI) is relatively new index that has gained wider
acceptance  over others in India (Chaudhar1 and Dadhwal, 2004) and  worldwide
(Gutman, 1998; Hayes et al., 1999; Vicente-Serrano et al., 2004; Wu et al., 2005) This
popularity of SPI is mainly due to its robustness, temporal flexibility and effectiveness to
represent both wet and dry spells at different time scales. This index captures the
accumulated deficit (SPI < 0) or surplus (SPI > 0) of precipitation over a specified period
of time and provides a normalized measure (i.e. spatially invariant Z score) of relative
precipitation anomalies at multiple time scales. Seasonal timing of measurements is an
important factor in the understanding of vegetation vigour and precipitation
relationships, and should be taken into account. Recently, (Peters et al., 2002) described
the Standardized Vegetation Index (SVI), which is calculated using a Z score and
converted to a probability value to evaluate vegetation and drought status with in
growing season. 

Forecasting of when a drought is likely to begin or to come to an end is extremely
difficult. A better characterization of droughts through drought indices is essential to
support appropriate monitoring and prediction tools, which allow for drought warning.
The Markov chain approach was used by (Lohani and Loganathan, 1997 ) and (Lohani
et al., 1998) to develop an early warning tool. These authors adopted a non-
homogeneous Markov chain formulation to derive drought characteristics and assess dry
spells from long-term records of the PDSI in two climatic areas of Virginia (USA). (Sen,
1998) proposed two probabilistic models for drought characterization, regional
persistence and multiseasonal respectively. They conclude that drought occurrences are
dependent on the regional and temporal dry and wet spell probabilities as well as size of
the region considered. (Steinemann, 2003 ) adopted six classes of severity, from wet to
dry conditions, relative to the PDSI and the SPI, and used the homogeneous Markov
chain formulation to characterize the steady-state probabilities, and the probabilities for
drought class transition and for duration in a class. The results obtained allowed the
author to propose triggers for activating drought preparedness plans at the basin scale.
Other Markov chains applications were recently published but concern dry spells, not
early warning.

Markov Random Fields (MRF) are commonly used probabilistic models for image
analysis (Li, 2001). The basic idea of MRF is to model the contextual correlation. Indeed,
focusing on classification-based image analysis, it has been shown in the literature that the
integration of the context into a classification scheme can significantly improve the results
in terms of accuracy and reliability. The first work on MRF based statistical methodology
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for image analysis application was employed by Geman and Geman in the year 1984 (Li,
2001). Solberg et al. (1996) proposed MRF based model for classification of multi-source
satellite imagery. Their model exploits spatial class dependencies between neighbouring
pixels in an image, and temporal class dependencies between different images of the same
scene. They also compare the performance of MRF based model with simpler reference
fusion model. The MRF models had been widely used in image change detection. In order
to increase the accuracy of the final change detection map, (Bruzzone and Prieto, 2000 )
integrated spatial contextual information in their unsupervised change detection scheme
through an MRF model that exploits interpixel class dependences to model the prior
probabilities of change and no-change classes, by including the  temporal aspect of the
data, the model was found to be suitable for detection of class changes between the
acquisition dates of different images. (Bruzzone and Prieto, 2002) also developed an MRF-
based adaptive semi parametric technique that makes use of the Reduced parzen estimate
(RPE) and the E-M algorithm to estimate in an unsupervised way the changes that may
occur in a temporal sequence of images. (Kasetkasem and Varshney, 2002) addressed the
problem of image change detection based on MRF models. They modelled MRF by using
noise lese images obtained from the actual scene and change images in order to search for
an optimal image of changes by applying the maximum a posterior probability (MAP)
decision criterion and the Simulated Annealing energy minimization procedure.
(Kasetkasem et al., 2005) employed MRF for land cover mapping at sub pixel level. They
proposed method that was able to generate super-resolution land cover maps from remote
sensing data. (Liu et al., 2006) proposed a spatial-temporal classification algorithm for
forest disease monitoring that explicitly classify individual images using spectral, spatial
and temporal information. They concluded that MRF can be used as efficient probabilistic
models for the analysis of spatial and temporal contextual information. Thus it can be
conclude that these reviews highlight the numerous efforts made till date with developing
relationship between various satellite and meteorological derived indices to point out a
specific type of drought caused either by rainfall deficiency, or less vegetation vigour or low
agricultural production. In the present study, both meteorological indices (SPI) and
satellite based drought indices (SVI) have been used to assess the drought. Drought has
spatio-temporal behaviour. So it is important to study the temporal as well as spatial nature
of drought. The previous study provides a basis for analytical investigation of spatio-
temporal pattern of droughts.  The main objective of the research was to build a tool for
identification of spatio-temporal pattern of drought using Three-dimensional Markov
random field. The study was focused on three major areas: 1) quantification of drought
classes using NDVI and rainfall datasets in terms of data descriptor. 2) Incorporation of

VIRAT SHUKLA, N. R. PATEL, V.A. TOLPEKIN, V. K. DADHWAL



NDVI and rainfall datasets in three-dimensional Markov Random field. 3) Method to be
used for parameter estimation of three-Dimensional Markov random field model.

The outcome of this research provides the users with guidelines on the parameters
setting of the Markov random field model. The result obtained using Three-dimensional
Markov random field encourages the end users to apply the technique in remotely
sensed image with respect to spatio-temporal aspect of the drought to provide more
meaningful and understandable information. This kind of information is essential for a
broad group of users within the geo-informatics society who are interested in
monitoring, mitigation and management of drought. Therefore, this research adopt
Three-dimensional Markov random field to model spatio-temporal pattern of drought.

Theoretical Background

Markov Random Field Model
Meteorological and agricultural drought occurrences along time and space take place
randomly and therefore their scientific quantifications are possible by the probabilistic
methods. Herein Drought characteristics of any phenomenon are assumed to have
spatial and temporal stationarity with underlying independent generating mechanism
and can be modelled by suitable technique. In interpretation of drought condition,
context is very important. Contextual information is ultimately necessary in the
interpretation of visual information. It is one kind of spatial relationship and has drawn
our particular interest for remotely sensed imagery interpretation shown in this study.
Contextual information, or so-called context for simplicity, may be defined as how the
probability of presence of one object (or objects) is affected by its (their) neighbours. It
may be derived from spectral, spatial or even temporal attributes. In this study, the
spatial and temporal dimension has been focused upon. Spatial context shows the
spatial relationship between spatially neighbouring pixels within the predefined
neighbourhood system. The temporal dimension is defined between the multiple images
of the same area. A scene is understood in the spatial and visual context of the objects
in it; the objects are recognized in the context of object features.

Using concept of context, pixel in the image are not treated in isolation, but are
considered to have relationship with their neighbours. Thus the relationship between
pixel of interest and its neighbours are treated as being statistically dependent. A nearest
neighbourhood dependence of pixels on an image lattice is obtained by going beyond
the assumption of statistical independence. Information on the nearest neighbourhood
is used to calculate conditional probabilities.  
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Generally, in drought Modeling through remote sensing, a pixel labelled as class of
moderate drought is likely to be surrounded by the same class of pixels unless it is
located on the boundary. Incorporating contextual information into Drought Modeling
can be done in different ways. One simple method of adopting context is to use majority
voting within a prescribed window. In such a method, the central pixel will be changed
to the class that occurs most frequently in the window. There are more elegant ways of
Modeling such contextual behaviour.

A class of contextual model known as Markov random field (MRF) can be useful for
Modeling context in a more precise way .It is a probabilistic model defined by the local
conditional probabilities.  Markov random field (MRF) theory provides a convenient and
consistent way for Modeling spatial-temporal contextual information in terms of
conditional prior probabilities. MRF is used to construct a priori probability in Bayesian
sense so as to accomplish the Maximum a Posteriori (MAP) estimate during the
Modeling process. Maximum a posterior (MAP) probability is one of the most popular
criteria for optimality and widely applied for MRF Modeling (Li, 2001).

Study Area and Data sets
The Gujarat State is situated on the western coast of India between 20º06' to24º42' north
latitudes and 68º10'N to 74º28' east longitudes which is shown in Fig1.

Figure 1: Gujarat map showing Weather monitoring Stations.
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It comprises of 25 districts with a total geographical area of 1.96 lakh square kilometers.
It has a 1600 km long coast-line. The Gujarat state has been divided into three major
physiographic regions, namely the Central Highlands, the Western Hills and the West
Coast. The extreme part of the state is occupied by the Central Highlands, a wide belt of
hilly region bordered by the Arravali Range on the west. The Western Hills forms the part
of the peninsular plateau while the Western Coast covers major portion of the state,
comprising of Gujarat Plain, Kathiawar Peninsula and Kutch Peninsula. Deltaic plains by
the alluvium laid by the Tapi, Narmada, Mahi, Sabarmati, Banas and Luni river systems
have lead to the formation of Gujarat Plains progressively. Kathiawar Peninsula is a
dissected basaltic plateau with flat-topped hills of Mesozoic sandstones in the northeast
while the central part forms a high plateau bordered by scarps and dotted hills.

The climate of Gujarat is also varied and can be divided into three seasons: (1) hot
and dry season from May to June; (2) warm and rainy season from June to September;
and (3) cool and dry post-rainy season from October to April (Agro climatology of
Gujarat). The north-western part of the state is dry, with less than 500 mm of rain every
year. In the more temperate central part of the state, the annual rainfall is more than 700
mm. In the southern part, rainfall averages 2000 mm a year. Gujarat is endowed with a
wide range of soil type. The state is divided into seven agro climatic zones mainly based
on amount of rainfall and soil types. Landuse is one of the driving forces behind water
demand and critical factors of agricultural drought vulnerability. Agriculture in Gujarat
forms a vital sector of the states economy. 

Data
Data has been acquired mainly from two sources, firstly NDVI derived from satellite
sources and secondly rainfall obtained from ground rainfall stations. The monthly time
series of NDVI data set for the period of 1981-2003 was taken into consideration. The
time series of  NOAA-AVHRR based  fortnightly NDVI composite created by  Global
Inventory Modeling and Mapping studies (GIMMS)  Group at NASA's Goddard Space
Flight Center (Tucker et al., 2005).The composite images covering Eurasia (EA)  was
downloaded and subset corresponds to Gujarat was extracted from continental data sets.
Monthy NDVI data set derived by taking maximum of fortnightly NDVI at a spatial
resolution of 8km. Monthly rainfall datasets were acquired for the period of 22 years
ranging from 1982-2003 for the Gujarat state. Monthly rainfall for 164 rain stations has
been used to derive Standardized Precipitation Index (SPI). The data has been collected
from Bhaskaracharya Institute of Satellite and Geoinformation (BISAG), Gandhinagar
and Agro-Meteorological Department, Anand Agriculture University, Anand. Many
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experiments were performed to obtain the optimal parmeters value. To estimate the
parameter value, training dataset was used and the corresponding result was validated
with the reference data.

Methodology
The methodology developed for modelling spatio-temporal pattern of drought is as
shown in Fig 2 and discussed in following sections. 

Figure 2: Schematic representation of steps involved in modeling spatio-temporal

pattern of drought using 3D Markov Random field Model.

All the twenty two years of NDVI-AVHRR datasets were used for the calculation of SVI.
As mentioned earlier SPI was developed to quantify precipitation deficit at different time
scales. SPI was interpolated for five months i.e. June, July, August, September and
October for the time period from 1982 to 2003. A geostatistical technique of
interpolation i.e. Ordinary kriging was performed with grid size of 8 Km and seasonal
maps for 22 years were prepared. The spatial continuity of the data was examined on the
basis of the variogram analysis. Variogram for different months were made to get the sill,
range, partial sill and nugget. Considering the lag effect, correlation analysis was carried
between SPI and SVI in order to establish the relationship. Based on the relationship
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between SPI and SVI, thresholds to categorize drought classes from SVI were defined.
Optimization process was carried using simulated annealing algorithm. Finally
parameter estimation and Tuning of the Three-dimensional Markov Random field model
was done in order to validate the result.

Computation of Standardized Vegetation Index and Standardized
Precipitation Index
All the twenty two years of NDVI-AVHRR datasets were imported to ENVI 4.1 and
compositing process was carried out to select the pixels with high NDVI values to get a
cloud free image. NOAA-AVHRR- NDVI data sets from 1982 to 2003 was used to calculate
the Standardized Vegetation Index. The SVI is based on calculation of a Z-score for each
AVHRR pixel location. The Z-score is a deviation from the mean in units of the standard
deviation, calculated from the NDVI values for each pixel location for each month for
each year, during the n-years as 

Where, 
Zijk = Z-Score
NDVIijk = highest NDVI value for pixel i during month j for year k,
NDVIij = mean NDVI for pixel i during month j over n years

ij = standard deviation of pixel i during month j over n years.
After the calculation of Z- score for each pixel, the probability of that score was
determined as 

This per pixel probability is expressed as the Standardized Vegetation Index (SVI), is
an estimate of the "probability of occurrence" of the present vegetation condition which
was calculated using the program that was written in IDL 6.1.

Monthly Rainfall data for 164 rainfall stations were arranged according to format
defined by (National Drought Mitigation Center, 2006) to have input to SPI program. SPI
was computed for each station on time scale 1, 2, 3, 6, 9 and 12. This index is calculated
by fitting gamma distribution to observed values of precipitation at different time steps
(e.g. 1 month, 2 months, 3 months… 48 months) and then transform back to normal
distribution with mean zero and variance one. The SPI was designed to quantify the
precipitation deficit for multiple time scales. SPI at different time scale e.g. 1-month or
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3-months SPI of particular month represents deviation in precipitation totals for same
month and   current plus previous two months, respectively.  

Three-dimensional Markov Random field Model Framework
Consider a Set S that denotes the set of sites defined over an image. The sites in S are
related to one another via a neighbourhood system. A neighborhood system for S is
defined as:

Where Ni is the set of sites neighboring i. The neighborhood system has the
following properties:
(1) A pixel can not be a neighbour to itself.
(2) The neighbouring relationship is mutual.

In the first order neighbourhood system, also called the 4-neighborhood system, every
site has 4-neighbors which share a side with the given site. In Second order
neighbourhood system, every site has 8-neighbors which share a side with the given site.
Although it is possible to use various spatial neighbourhood systems, Second order
neighbourhood is considered to be enough in some of the previous MRF studies (Hailu
Kassaye, 2006; Kasetkasem et al., 2005; Kasetkasem and Varshney, 2002 ). Hence, a
second order neighbourhood system or window size 3 was considered in the present
research. The Fig 3 shows the spatial-temporal neighbourhood system used in this study.
The nomenclature used to represent theoretical and mathematical formulation of 3-D
Markov Random Field Model is mentioned in Table 1. 

Figure 3: MRF neighbourhood systems (Note: spatial neighbourhood (Left); spatio-

temporal neighbourhood. Axes X, Y are the spatial coordinates of sites. Axis T is the

temporal index of the sites (Right).)
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Table 1 Nomenclature used in defining 3-D Markov random field model

Formulation of the Objective Function

Spatial Energy Function 
The spatial energy was defined as favoring small changes in the drought class and
penalizing the large ones. The spatial energy function encourages neighbouring pixels to

be classified with the same labels and thus impose a spatial smoothness effect. Both
the spatial and temporal energy functions require the definition of a neighbourhood
system. In our case, a second-order neighbourhood system is adopted.  Specifically, the
spatial energy function involved in MRF is specified as:

Where, 
Usp is spatial energy function
cc((ii,,tt)) denote the drought class of site i at time t based on SVI.
cc((NNS((ii,,tt)))) denote the neighbouring drought class of site i at time t based on SVI.
is a non-negative parameter controlling the spatial dependence

Temporal dependence energy function
Temporal neighbors contribute to the energy function in a probabilistic sense which is
specified by transitional probability concept. In our spatial-temporal approach, the
temporal relation is modeled by a transition probability matrix which defines the
probability of one pixel belonging to one drought class at a time T1 given that it belongs
to another class at time T2. Specifically the temporal dependence energy function in
MRF model is formulated as
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Symbol Explanation
c (i, t) Class value of site i at time t, class is defined as drought class based on SVI
d (i, t) Class value of site i at time t, class is defined as drought class based on SPI
U sp Spatial prior energy function
U td Temporal Dependence energy Function

ct Set of class labels for the scene at time t
c (Ns (i, t) ) Class vector of Spatial neighbourhood of site i at time t

Z Normalizing constant also called partition function
Model Parameters

sp Parameter to control the spatial energy
td Parameter to control the temporal dependence energy
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UUtd is temporal dependence energy function.
ddi,t1 denotes the drought class of site i at time t1 based on SPI.
CCi,t2 denotes the drought class of site i at time t2 based on SVI.

is the transitional probability of   
Bayes statistics is a theory of fundamental importance in estimation and 
decision making.

When the context is introduced as prior information and modeled by means of MRF,
Bayesian framework can be adopted to construct the global energy and labeling is carried
out by minimizing this global posterior energy, since energy and probability are
inversely proportional, one can say that the lower the energy the higher is the
probability of labeling. Information on the nearest neighborhood is used to calculate the
conditional probabilities. In this study we applied the assumption of MRF being
isotropic and homogeneous for the neighboring pixels in the same neighborhood order.
The global posterior energy is defined as:
UUGlobal=UUsp ++  UUtd

Where UUGlobal is global posterior energy.
The optimal class label can be found by minimizing the global posterior energy, to
get the optimal solution maximum a posterior (MAP) was adopted as:

After the construction of the global posterior energy, the next step was to perform
pixel labeling by minimizing the global posterior energy. One would like to obtain a
pixel labeling that is reasonable to the data and the prior model. A popular criterion is
to find the labeling that maximizes the posterior distribution (MAP). Three algorithms,
namely Iterated conditional modes (ICM), Maximum a Posterior Marginals (MPM) and
Simulated Annealing (SA) can be used to obtain global minimum energy. These
algorithms are iterative in nature.

Simulated annealing algorithm was adopted to find the MAP solution. Simulated
annealing is a type of stochastic algorithm for combinatorial optimization. The concept
of simulated annealing is equivalent to the introduction of the noise in to the system to
shake the search process away from the local minimum. The idea is similar to a process
in metallurgy in which a small region of a metal structure is heated until it is pliable
enough to be reconstructed in to the desired shape. The metal is then cooled very slowly
to make sure that it is given enough time to respond. Changes in temperature must be
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very small until the metal is hardened. The whole process is controlled by initial
temperature and updating schedule. Initially the process is started at high temperature;
this means that a high temperature can increase the probability of a pixel being replaced
by new class label even though the new class label has high energy. The temperature is
decreased according to predefined cooling schedule. In this study we adopted following
equations for the cooling schedule.

Where T0 is initial temperature
beta is a constant which represents how much the temperature would decrease for

every iteration. It is called as descent constant or other wise called as "Rate of fall".
K denotes the number of iteration.
The pixel updating was performed according to the energy difference between old

class label and new class label. If the energy of the old class label was higher than the
new class label, than pixel was replaced by the new class label. The iteration was repeated
for each temperature update value.

The MRF models make use of parameters that weigh the influence of information
sources on the decision process. This can be viewed as a way of expressing the degree of
confidence (reliability) in each information source. In practice, the MRF parameters
permit one to "tune up" the MRF model in order to get optimal solution. The
determination of the MRF parameters is not a trivial problem. The larger the number of
information sources, the larger the number of MRF parameters and the more difficult the
parameter estimation. In this study, minimum perturbation method was used to
estimate the MRF parameters. Let us consider image consists of M sites i.e. Si (i= 1 …
M).The first step of the method consists in computing the total energy associated with
each pixel i.e. class label wj (j = 1, 2… 5) associated with that pixel, under the assumption
that all the information sources have the same reliability weights. In other words, the
following energy is computed for each pixel associated class label.

The optimal class     for the site Si is one that satisfies

The "minimum energy perturbation" is defined as the smallest additional amount of
energy required to classify the Pixel class label correctly (Melgani and Serpico, 2003).
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Where wi stands for the true class of the pixel i and d is an arbitrary small positive constant.
In case the optimal class    should correspond to the true class wj, the minimum
perturbation energy would become null. Then after the computation of the minimal energy
perturbation for each pixel class label, the second step of method consists in estimating the
values of parameters that satisfy the following systems of equations:

Where Ti (i = 1… m) given by

To find an approximate solution for such a system characterized by a number of
equations larger than the number of unknowns is to adopt the minimization of the sum-
of-squared error as a criterion and to apply the technique based on the pseudo-inverse
matrix for its optimization. By rewriting the system of equations in terms of matrices:

To estimate the optimal MRF parameter vector     is given by the following expression
based on the pseudo-inverse of the matrix U:

Where tr is transpose of the matrix.
The method is applied in the context of the initialization step of the simulated

annealing algorithm.

Results and Discussion
The relationship between vegetation and moisture availability was clarified by
analyzing the co variation of SVI and SPI time series with the scatter plots and
correlation analysis. SVI time series data for each of the 164 rain stations was extracted
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from the 22 years SVI time series images. Correlation coefficient between SPI and SVI
was calculated. Generally there is a time lag between precipitation events and response
of vegetation to such events. The time interval between a precipitation event and the
time when precipitated water might reach a plant root and affect plant growth can
vary from 1 to 12 weeks depending on vegetation type (Ji and Peters, 2003). In order
to account for this interval and assess the real maximum correlation between SVI and
SPI the SVI/rainfall correlation coefficients were calculated for time lags of 0,1 and 2
months. Out of three lag-time, the correlation coefficient for time lag of 1 month was
found to be higher than others one. (Rundquist et al., 2000) found the lag time of
vegetation response to precipitation was approximately 1 month. Mathematically the
relation can be written as following:

Where t denotes month.
Representative points for agro-climatic zones of Gujarat were selected for analysis.
Correlation analysis was carried out for the month of June to October between SPI and
SVI from the period 1982-2003 to analyze the temporal pattern of SPI and SVI and to see
variation in vegetation according to rainfall. It can be noted from the Table 2 that
significant correlation exists between SPI and SVI in different months. 

Table 2: Correlation analysis between SPI and SVI for time lag of 1-month

When comparing the correlation coefficients with the vegetation phonological cycle, it
is clear that vegetation response to moisture availability varies significantly between
months. Correlation between SPI and SVI on lag effect was found to be positive in north
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SSTTAATTIIOONN  NNAAMMEE SSPPII((JJUUNNEE))  --SSVVII
((JJUULLYY))

SSPPII((JJUULLYY))  --  SSVVII
((AAUUGGUUSSTT))

SSPPII((AAUUGGUUSSTT))  --  SSVVII
((SSEEPPTTEEMMBBEERR))

SSPPII  ((SSEEPPTTEEMMBBEERR))  --
SSVVII  ((OOCCTTOOBBEERR))

NAKHTRANA 0.06 0.56 0.317 0.57

HIMATNAGAR 0.49 0.144 0.46 0.72

JHAGADIA 0.47 -0.08 0.14 0.12

LAKHTAR 0.40 0.05 0.29 0.14

DHORAJI 0.24 0.03 0.39 0.37

JAMNAGAR 0.45 0.19 0.48 0.26

RAJKOT 0.19 0.28 0.52 0.29
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and northern-western part of Gujarat for all months. Reason behind positive correlation
could be because of rain fed crops. The lowest correlation values appear in south Gujarat,
which is high rainfall area (1000 mm - 2500 mm) where as high correlation ( > 0.4) is
vigilant in arid and semi-arid areas of north Gujarat and central part of Kathiawar
peninsula. These are the areas where annual rainfall is between 400- 700 mm. maximum
correlation values are obtained in this region because precipitation event serves as
primary source of water for plant growth.

Generalized Classification of the Drought Classes
The generalized classification of the drought classes was done based on the observed
relationship between SPI and SVI. All the SPI and SVI images were reclassified
accordingly. For the Standardized Vegetation index (SVI) images, five drought classes
have been defined in terms of data descriptor. In order to implement the MRF model and
for simplicity the drought classes were reclassified. So images consist of only numbers
i.e. 1, 2, 3, 4 and 5. Each number corresponds to different drought class. Generalized
classification of drought class was done which is shown in Table 3.

Table 3 Generalized classification of drought classes

Several attempts were made to understand and illustrate the capability of three-
dimensional Markov random field model for identification of drought pattern at next
time moment using spatio-temporal information. To identify the pattern of drought at
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SSPPII  VVAALLUUEESS DDRROOUUGGHHTT  CCLLAASSSS
-2 to less Severe drought

-1.5 to -1.99 Moderate drought
-1.0 to -1.49 Slight drought
-0.99 to 0.99 Normal
1.0 to 2.0+ Favourable

SVI threshold Drought Class
0 - 0.10 Severe drought

0.10 - 0.25 Moderate drought
0.25 - 0.5 Slight drought
0.5 - 0.75 Normal
0.75 - 1 Favourable
SPI and SVI values\Reclassification

Severe drought 1
Moderate drought 2

Slight drought 3
Normal 4

Favourable 5



next time, initially the class temporal prior probability was calculated by considering the
temporal images for each pixel values. That class label was chosen which maximize the
class temporal probability. It was done in order to get an image that can be used as an
initial image for the optimization process. The spatial energy function encourages
neighboring pixels to be classified with the same class labels and thus imposes a spatial
smoothness effect on the final prediction. The temporal dependence energy function
was calculated in terms of transitional probability, thus updating the prediction with
important source of information, then at each step updating of class label was done in
such a way that global posterior energy is minimized. So global posterior energy i.e.
spatial energy function and temporal dependence energy which involves the pixel of
interest was computed for all possible updates of the class labels and new class label was
chosen that correspond to lowest energy value. The replacement of old class label with
new one was done and then the model proceeds to next pixel. If the optimal class label
was the same as before the update, then it was not considered as a successful update.
Otherwise it was considered as a successful update. During optimisation process,
different experiments were performed to obtain the optimal parameters value using
different training datasets.  Several attempts were made to find good set of MRF
parameters. Few experimental results are discussed in next subsection
EExxppeerriimmeenntt  11:: An experiment was performed to obtain the optimal parameters value.
The initial temperature was set to 100. To estimate the parameter value, training dataset
was used. An image of SPI, June 1987 was used. For the initialization purpose the image
from 1982 to 1986 of SVI July was used to calculate the temporal class probability.
During this process the temperature is lowered slowly until it reaches to a freezing state.
The optimization process converges to minimum energy after 32 iterations. The optimal
parameters value obtained are:

sp = 0.0162306  and   td = 0.377119

Using the above parameters value, the estimation of SVI 1987, July, August,
September and October was done. SVI July 1987 prediction matches with reference data
which is shown in Fig 4.
EExxppeerriimmeenntt  22:: In another experiment the initial temperature was set to 100. To estimate
the parameter value, training dataset was used. An image of SPI, August 2002 was used.
For the initialization purpose the image from 1982 to 2001 of SVI September was used to 
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Figure 4: Predicted image of SVI July 1987 (Left) and Reference data- SVI July 1987

(Right) for experiment 1.

calculate the temporal class probability. During this process the temperature is lowered
slowly until it reaches to a freezing state. The optimization process converges to
minimum energy after 66 iterations. The optimal parameters value obtained are:

sp = 0.00048,   td = 0.128913
Using the above parameters value, the estimation of SVI 1987, July, August,

September and October was done. The predicted SVI July 1987 and the corresponding
reference data is shown in Fig 5.

Figure 5: Predicted image of SVI July 1987 (Left) and Reference data- SVI July 1987

(Right) for experiment 2.
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From the results it is concluded that there is no unique optimal parameter value that can
optimize the prediction quality of all transitions of all possible data. The reason for not
getting the required result depends on how well the relationship is defined between SPI
and SVI. The relationship between the SPI and SVI has affected the model output
because the model was implemented according to the assumption that the SVI reflects
the state of vegetation at the given moment and SPI influences the state of vegetation in
the future, this effect was modeled in terms of energy function in the MRF. If the output
of a model is not what was expected, there are two possible reasons:

The formulation of the objective function was not appropriate one for Modeling
the complex phenomenon like drought.
The output was a low quality local minimum

The most important aspects of the energy function are its form, involved parameters and
the corresponding assumptions made during the Modeling. The form and parameters
together define the energy function which in turn defines the minimal solution. The
form and parameters depends on the assumption about the expected solution and the
observed data. Since the parameters are part of the definition of the energy function, the
solution is not completely defined if the parameters are not specified even if the
functional form is known. The above mentioned reason may deviate the solution from
the expected.

Selection of factors that affect the drought Modeling is also a crucial component. The
factors such as soil moisture, temperature, evaporation, relative humidity, evapo-
transpiration, wind speed affect the drought Modeling. One of possible reason for not
getting the expected output was the above mentioned constraints or factors which affect
the drought prediction was not embedded in to the energy function. The energy
functions defined in this study was done using only first order approach. This may be
one of the possible reasons that affect the output. 

Conclusions 
The main objective of the study was to build a tool for identification of drought pattern
using three-dimensional Markov random field. In order to address the objectives three
research questions were posed during this study. Several experiments were carried in
order to provide answers for the raised questions. The first research question examine
that how to quantify the drought classes using NDVI and rainfall in terms of data
descriptor. It was concluded from the study that the temporal variations of SVI are
closely linked with precipitation and there exists a significant correlation for time lag of
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1 month between SVI and 1-month SPI. It was found that rainfall has positive relation
with SVI and also correlation of rainfall/SVI was found to be strong in water limiting
areas, which states that these areas are more prone to drought. Based on the relationship
between the SVI and SPI, generalized classification of drought class was done and five
drought classes were defined. Finally the quantification of drought class in terms of data
descriptor was presented. It was found that using SPI one can compare rainfall of two
areas with different rainfall characteristics. Thus SPI can be used for the indication of the
drought characteristics at the spatial level. NDVI time series was subjected to scale to
Standardized vegetation index in order to monitor the drought. By identifying the
relationship between SPI and SVI, It was concluded that at some location were SPI was
unable to show the drought area, SVI get advantage over SPI. Thus integration and
analysis of drought identified areas from SPI and SVI, help in correctly identifying the
region affected by drought. The second research question was how to incorporate the
NDVI and rainfall in MRF model. The model incorporates the relationship between the
SPI and SVI i.e. SVI reflects the state of vegetation at the given moment and SPI
influences the state of vegetation in the future, this effect was modeled in terms of
energy function in the MRF. The third research question tells about the proper parameter
setting in the MRF model and the method adopted for the parameter estimation. Proper
parameter setting can lead to a successful result. So it was necessary to search the optimal
parameters values. According to the experimental results, it is concluded that there is no
unique optimal parameter value which can optimize the prediction quality of all
transitions of all possible data. The reason for not getting the expected output depends
on the assumptions that were made during the Modeling. The model was implemented
according to the assumption that lag time of vegetation response to precipitation was
approximately 1 month. From the previous studies, it was found that vegetation
response to precipitation was 4-8 weeks depending on the vegetation cover types. Sine
the lag time is not known exactly, the output of the model was affected. The validation
of model was done with mentioned reference data. The prediction of SVI July 1987 using
parameter values 0.0162306, 0.377119 were found optimal for that drought year. The
choice of the energy functions has also affected the model output.  For the parameter
estimation, the simple and fast method "the minimum perturbation energy" was used to
get the values. A tool to model spatio-temporal pattern of drought using Three-
dimensional Markov random field was developed. The model in the present state worked
well with assumption taken in present study. Since drought Modeling is affected by
many parameters, the model can be improved by incorporating more parameters (soil
moisture, temperature, evaporation, relative humidity, evapo-transpiration, wind speed)
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in form of well defined energy function. In general one can conclude that, the ability to
extract drought in automated fashion will contribute to further spatio-temporal analysis
of drought Modeling. This work using a spatio-temporal explicit algorithm in drought
monitoring context has broader applicability across different applications using
temporal remote sensing imagery. The overall methodology presented in this paper
provides a general framework on the use of spatio-temporal information from NDVI
time series data. As such the new method is not limited to the specific data used in this
work. However, the spatio-temporal information might vary its value in different
applications with different spatial resolution and temporal frequency of images
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